Polarisation assessment in an intelligent argumentation system using fuzzy clustering algorithm for collaborative decision support

نویسندگان

  • Ravi Santosh Arvapally
  • Xiaoqing Frank Liu
چکیده

We developed an on-line intelligent argumentation system which facilitates stakeholders in exchanging dialogues. It provides decision support by capturing stakeholders’ rationale through arguments. As part of the argumentation process, stakeholders tend to both polarise their opinions and form polarisation groups. The challenging issue of assessing argumentation polarisation had not been addressed in argumentation systems until recently.Arvapally, Liu, and Jiang [(2012), ‘Identification of Faction Groups and Leaders in Web-Based Intelligent Argumentation System for Collaborative Decision Support’, in Proceedings of International Conference on Collaborative Technologies and Systems] earlier developed a method to identify polarisation groups. These groups, however, tend to overlap to a certain degree; each stakeholder may be a member of multiple polarisation groups to varied degrees. Quantifying stakeholders’ membership in multiple polarisation groups is an important issue in the argumentation for collaborative decision-making, which is not addressed earlier. We present a novel approach using fuzzy clustering algorithm to address this issue in this article. The method is evaluated using data sets produced from the discussions of 24 stakeholders. Experimental results indicate that our method is effective for both identifying polarisation groups and quantifying stakeholders’ degree of membership in each polarisation group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering

During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...

متن کامل

AN INTELLIGENT INFORMATION SYSTEM FOR FUZZY ADDITIVE MODELLING (HYDROLOGICAL RISK APPLICATION)

In this paper we propose and construct Fuzzy Algebraic Additive Model, for the estimation of risk in various fields of human activities or nature’s behavior. Though the proposed model is useful in a wide range of scientific fields, it was designed for to torrential risk evaluation in the area of river Evros. Clearly the model’s performance improves when the number of parameters and the actual d...

متن کامل

Applying a decision support system for accident analysis by using data mining approach: A case study on one of the Iranian manufactures

Uncertain and stochastic states have been always taken into consideration in the fields of risk management and accident, like other fields of industrial engineering, and have made decision making difficult and complicated for managers in corrective action selection and control measure approach. In this research, huge data sets of the accidents of a manufacturing and industrial unit have been st...

متن کامل

A Prioritization Model for HSE Risk Assessment Using Combined Failure Mode, Effect Analysis, and Fuzzy Inference System: A Case Study in Iranian Construction Industry

The unavailability of sufficient data and uncertainty in modeling, some techniques, and decision-making processes play a significant role in many engineering and management problems.  Attain to sure solutions for a problem under accurate consideration is essential.  In this paper, an application of fuzzy inference system for modeling the indeterminacy involved in the problem of HSE risk assessm...

متن کامل

Breast Cancer Risk Assessment Using adaptive neuro-fuzzy inference system (ANFIS) and Subtractive Clustering Algorithm

Introduction: The adaptive neuro-fuzzy inference system (ANFIS) is a soft computing model based on neural network precision and fuzzy decision-making advantages, which can highly facilitate diagnostic modeling. In this study we used this model in breast cancer detection. Methodology: A set of 1,508 records on cancerous and non-cancerous participant’s risk factors was used.  First,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Argument & Computation

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013